Disk/corona model: The transition to ADAF

نویسنده

  • B. Czerny
چکیده

We propose a model of the accretion flow onto a black hole consisting of the accretion disk with an accreting two-temperature corona. The model is based on assumptions about the radiative and conductive energy exchange between the two phases and the pressure equilibrium. The complete model is determined by the mass, the accretion rate, and the viscosity parameter. We present the radial dependencies of parameters of such a two-phase flow, with advection in the corona and the disk/corona mass exchange due to evaporation/condensation included, and we determine the transition radius from a two-phase disk/corona accretion to a single-phase optically thin flow (ADAF) in the innermost part of the disk as a function of accretion rate. We identify the NLS1 galaxies with objects accreting at a rate close to the Eddington accretion rate. The strong variability of these objects may be related to the limit cycle behaviour expected in this luminosity range, as the disk, unstable due to the dominance by the radiation pressure, oscillates between the two stable branches: the advection-dominated optically thick branch and the evaporation branch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaporation of accretion disks around black holes: the disk-corona transition and the connection to the ADAF

We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister 1994) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well studied black hole binaries we take the mass flow rates derived from a fit of the ADAF mod...

متن کامل

Evaporation of Accretion Disks around Black Holes: The Disk-Corona Transition and the Connection to the Advection-dominated Accretion Flow.

We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well-studied black hole binaries, we take the mass flow rates derived from a fit of the advection-do...

متن کامل

An inner disk below the ADAF : the intermediate spectral state of black hole accretion

Aims: The hard and soft spectral states of black hole accretion are understood as connected with ADAF accretion (truncated disk) and standard disk accretion, respectively. However, observations indicate the existence of cool gas in the inner region at times when the disk is already truncated outside. We try to shed light on these not yet understood intermediate states. Methods: The disk-corona ...

متن کامل

Vertical structure of the accreting two-temperature corona and the transition to an ADAF

We investigate the model of the disc/corona accretion flow around the black hole. Hot accreting advective corona is described by the two-temperature plasma in pressure equilibrium with the cold disk. Corona is powered by accretion but it also exchanges energy with the disk through the radiative interaction and conduction. The model, parameterized by the total (i.e. disk plus corona) accretion r...

متن کامل

The formation of the coronal flow / ADAF

We develop a new method to describe the accretion flow in the corona above a thin disk around a black hole in vertical and radial extent. The model is based on the same physics as the earlier one-zone model, but now modified including inflow and outflow of mass, energy and angular momentum from and towards neighboring zones. We determine the radially extended coronal flow for different mass flo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000